

Semester I

Course title & Code	Credit s	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course	Department offering the course
		Lecture	Tutorial	Practical/Practice			
Engineering Physics I, GE-1	4	2	0	2	Class XII pass	Science Till Class X	Physics Faculty of CIC

Learning Objectives

This interactive learning module intends to provide basic theoretical understanding of Classical Mechanics with special emphasis on learning how these theoretical concepts are applied in designing mechanical and energy efficient systems etc.

Learning outcomes

- Understanding of physics principles in machines.
- Ability to conceptualize and build machines for real life use.
- Reverse engineering of mechanical devices and redesigning of such objects.
- Practical hands-on skills and understanding of simple engineering concepts derived from Mechanics.

SYLLABUS OF GE-1

UNIT – I (16 Hour)

Classical mechanics at work

Newtonian Mechanics (Kinematics & Dynamics) - Classical Mechanics at work
- deconstructing mechanical systems - Universal Gravitation

UNIT – II (16 Hour)

Oscillation & Rotation

Oscillations - Inertial & Non-inertial frames - Central force motion -
Understanding rotational dynamics

UNIT – III (16 Hour)

Machines

Efficiency and mechanical advantage in simple and complex machines: Levers, Pulley, Wheel & Axles, Gear systems, Hydraulic systems

UNIT – IV (16 Hour)

Energy Applications

Forms of energy and conversion between different forms of energy.

Practical component –

Engineering Kitchen Activities [Laboratory]

- Concepts of measurement, error, precision, accuracy. Concept of scale. Understanding Measuring Instruments
- Understanding oscillation using simple and compound pendulums
- Mechanics system with 850 Universal Interface – understanding Newtonian Dynamics
- Measurement of Moment of inertia from rotational dynamics
- Roller coaster dynamics – computer simulation and physical verification
- Coupled pendulum motion – using webcam and image analysis
- Ballistic Pendulum
- Understanding physics of complex machines – one implementation of “Tod-Phod-Jod” concept.
- Visualization in 3D and understand how things work – Building a CAD model in 3D to trace the flow of power, energy, information and material.
- Innovation project – designing instruments, machines, prototypes, applets

Essential/recommended readings

1. *Classical Mechanics*. Herbert Goldstein, Pearson Education, 2011.
2. *A Textbook of Machine Design*. R. S. Khurmi, and J. K. Gupta, S. Chand Publishing, 2005.

GENERIC ELECTIVES (GE-2): Engineering Chemistry I

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course	Department offering the course
		Lecture	Tutorial	Practical/Practice			
Engineering Chemistry I, GE-2	04	2	0	2	Class XII pass	Science Till Class X	Chemistry Faculty of CIC

Learning Objectives

This course is designed in such way, so that it provides a flavor of interesting, innovative, programmable and multifunctional materials of chemistry. Students

will be exposed to a lot of applications of materials from various walks of our day to day life. Different forms of materials (Biomolecules, drugs, nanomaterials, environment friendly materials etc.) will be discussed at length. Innovative applications of these extremely important materials for drug development, electronic material development, biosensing (like glucose monitoring / disease detection) and environmental remediation etc. will be elaborated, so that students become more aware of the useful materials, which may further be designed, developed and utilized by society as a whole.

Learning outcomes

- Students will be exposed to important aspects related to biomolecules, which are one of the most important constituents of our life.
- Students will get basic knowledge about programmable and multifunctional materials, which are being used in various walks of life nowadays.
- Students will be aware of the basic and advanced forms of nanomaterials and their applications in different fields.
- Importance of green chemistry will be understood through related examples.
- Students will be able to understand the importance of designing drugs and their development through various concepts of marketing.

SYLLABUS OF GE-2

UNIT – I (16 Hour)

Programmable and Multifunctional Materials

Basic features and properties of Biomolecules (Carbohydrates, Proteins, Nucleic Acids and Fats) along with their applications in our day to day life as food, medicine, drugs, enzymes for catalysis etc.; Programmable and Multifunctional DNA-Based Materials for various Applications; Chemical and Biological sensors.

UNIT – II (16 Hour)

Nanochemistry and Nanoscience in our day to day life

Synthesis of Nanoparticles (Green and Chemical Methods; Bottom up and Bottom down approach), Various kinds of nanomaterials and nanostructures (Nanoparticles, Nanoclusters, Nanorods, Quantum dots, Nanotubes, Nanorobots etc.) and their applications in various fields like biomedical, electronics, and environment etc.

UNIT – III (16 Hour)

Green Chemistry and it's applications in various fields

Green Chemistry, it's principles and applications in day to day life, Twelve Principles of Green Chemistry; Use of green chemistry for producing environmentally benign chemical products for varied applications.

UNIT – IV (16 Hour)

Designing of Drugs and their development

Discovery and designing of drugs (from concept to marketing); Organic therapeutic agents used in various diseases, their management and economics in market.

Practical component –

1. Three-dimensional modelling of DNA structure using various open access softwares available in public domain; Molecular Dynamics simulation of DNA (very simple and rudimentary coarse grained (CG) models, where DNA can be simulated as rods and proteins as ovoids/ spheres)
2. Understanding of principle, designing, fabrication and application of a nano-biosensor (Examples like glucose biosensors or diagnostic kits for COVID-19 etc. can be studied at length).
3. Simulation of a single nano-particle for understanding it's physical and chemical properties in solution
4. Practical assignments on computer-aided drug design/ In-silico drug designing using databases (like Pubchem, zinc database, drug bank etc.), ligand designing softwares, 2D and 3D structure making open access softwares like chem-draw, chimera, pymol etc. and ligand-target interaction (using various molecular docking softwares).

Essential/recommended readings

1. DNA Beyond Genes: From Data Storage and Computing to Nanobots, Nanomedicine, and Nanoelectronics by Vadim V. Demidov
2. Templated DNA Nanotechnology Functional DNA Nanoarchitectonics, 2019, by Govindraju, T.
3. DNA: The Secret of Life by James Watson
4. Structural DNA Nanotechnology by Nedrian Seeman
5. Nanotechnology: Importance and Applications, January 2019, by M.H. Fulekar
6. Scalable Green Chemistry: Case Studies from the Pharmaceutical Industry, by Stefan Koenig